

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE QUÍMICA

C.P. 6154 - CEP: 13083-970 - Campinas, SP

Fone: (19) 3521-3005 Fax: (19) 3521-3023

e-mail: dqi@iqm.unicamp.br

Ementas e Programas das Disciplinas oferecidas pelo Departamento de Química Inorgânica*

* English version of the courses offered at the Department of Inorganic Chemistry from page 12.

QI 145 - Interações Químicas

Ementa

Teoria dos orbitais moleculares para moléculas poliatômicas. Introdução à teoria de grupo. Ácidos e bases.

Programa	Pré-Requisito
Orbitais Moleculares	QG 108
Introdução à teoria de grupo: simetria, grupos pontuais e utilização da tabela de caracteres na classificação de moléculas e orbitais. Orbitais moleculares adaptados por simetria. Teoria dos	Carga Horária 30 h
Orbitais Moleculares para moléculas poliatômicas (espécies simples: H ₃ e H ₃ +, H ₂ O, NH ₃ e Diagrama de Walsh para moléculas EH ₂); Orbitais moleculares para cadeias de átomos, moléculas	Nº. Aulas
hipervalentes, moléculas com ligação π e deficiente de elétrons (exemplos: SF ₆ , fragmento B-H-B de boranos, NO ₂)	15
Ácidos e Bases	2 h / semanais Modalidade
Acidez de Bronsted: H+ em H ₂ O; ácidos e bases conjugadas; acidez e basicidade de solventes.	Teórica
Tendências periódicas na acidez de Bronsted: aqua-ácidos; oxo-ácidos (Regra de Pauling); óxidos anidros; anfoterismo. Ácidos e bases de Lewis: tendências periódicas; exemplos de reações como:	Oferecimento
formação de aduto, correlacionando com o orbital molecular; reações de deslocamento; metátese. Considerações estruturais e fatores estéricos na força de ácidos e bases nas diversas teorias.	1S → Diurno 2S → Noturno
Ácidos e bases duros e moles. A interpretação de dureza/moleza e a utilidade deste conceito. Acidez de superfície, por exemplo: sílica, alumina, aluminossilicatos. Conceito generalizado de	
ácidos e bases. Hidretos – tendências periódicas.	

Bibliografia

Bibliografia Básica

- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.
- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.

Bibliografia Complementar / Avançada

- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York: Harper Collins, 1993. 964p.
- S. F. A. Kettle. Symmetry and Structure: (Readable Group Theory for Chemists). 2nd ed. Chichester: John Wiley, 1995. 416p.
- F. A. Cotton. Chemical Applications of Group Theory. 3th ed. New York: John Wiley, 1990. 461p.
- G. M. Oliveira. Simetria de Moléculas e Cristais: Fundamentos da Espectroscopia Vibracional. Porto Alegre : Bookman, 2009. 269p.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 242 - Química Inorgânica Teórica

Ementa

Estrutura Atômica. Periodicidade. Modelos de Ligações Químicas. Conceitos de Acidez e Basicidade. Compostos de Coordenação. Introdução a Compostos Organometálicos e à Catálise.

Programa	Pré-Requisito
Estrutura Atômica e Tabela Periódica (Revisão)	QG101 QG102 / QI108 QI109
Modelos de Ligações Químicas	Carga Horária
Curva de energia potencial e formação de ligação química entre dois átomos de hidrogênio. Ligação iônica e o conceito de estabilização de rede. Ligação Covalente. Correção do modelo iônico	60 h
e o conceito de Polarizabilidade. Correção do modelo covalente e o conceito de Eletronegatividade. Teoria dos Orbitais Moleculares. Ligações secundárias. Ligações metálicas. Modelo de bandas.	№. Aulas
Introdução aos conceitos de materiais isolantes, condutores e semicondutores.	30
Introdução à Química do Estado Sólido	2 x 2 h / semanais
Celas unitárias. Retículos de Bravais. Empacotamento compacto. Interstício tetraédrico e	Modalidade
octaédrico e introdução ao conceito de ligas. Introdução à Difração de Raios X.	Teórica
Ácidos e Bases Conceito e definição de ácido e base de Lewis. Conceitos de ácidos duro e mole e a utilidade destas	Oferecimento
definições.	2S → Diurno
Química de Coordenação	2S → Noturno
Definição de compostos de coordenação. Efeito quelato. Isômeros estruturais e estereoisômeros. Teoria do campo cristalino. Teoria do campo ligante. Efeito Jahn-Teller. Reatividade de compostos de coordenação; mecanismos de reação de substituição de ligantes; Efeito e influência trans; Mecanismos de reações de oxidação-redução.	
Introdução à Química de Organometálicos e à Catálise Conceitos, definições e principais ligantes (M-CO e M-PR ₃). Regra dos 18 elétrons. Aspectos termodinâmicos e cinéticos dos mecanismos das reações de substituição, adição oxidativa e eliminação redutiva. Apresentação de exemplos de catálise por organometálicos e de ciclos catalíticos comercialmente importantes.	

Bibliografia

Bibliografia Básica

 $D.\ F.\ Shriver,\ P.\ W.\ Atkins,\ C.H.\ Langford.\ Inorganic\ Chemistry.\ 2nd.\ ed.\ Oxford: Oxford\ University\ Press,\ 1994.\ 819p.$

J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.

Bibliografia Complementar

G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.

C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 244 - Química Inorgânica Experimental

Ementa

Conceitos fundamentais envolvidos em reações químicas: reatividade de espécies envolvidas, equilíbrio, estequiometria, oxirredução, rendimento de reação, cinética química e catálise. Reatividade de metais. Preparação de complexos de metais de transição ilustrando a teoria do campo cristalino (efeito do ligante, número de coordenação e cor).

Programa	Pré-Requisito
Estudo de propriedades físicas e químicas, tais como: fusão, liquefação, combustão, oxidação,	QG101 QG102/ QG108 QG109
decomposição e equilíbrio químico.	Carga Horária
Síntese e caracterização de sólidos e polímeros inorgânicos, de complexos de metais de transição e/ou organometálicos de transição-d e estudo de sua reatividade.	60 h
Compostos inorgânicos com aplicações em: catálise, fotocatálise, conversão de energia,	Nº. Aulas
magnetismo, sensores, eletroquímica, óptica, dentre outras.	15
Processos de produção de compostos inorgânicos de interesse da indústria nacional.	4 h / semanais
. , ,	Modalidade
	Experimental
	Oferecimento
	2S → Diurno
	2S → Noturno

Bibliografia

Bibliografia Básica

Material bibliográfico selecionado pelo professor.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 245 - Química de Sólidos

Ementa

Empacotamento. Sistemas cristalinos. Estruturas cristalinas simples. Difração de raios X. Defeitos e não-estequiometria. Propriedades eletrônicas, ópticas e magnéticas de sólidos.

Programa	Pré-Requisito
Empacotamento. Celas unitárias, sistemas cristalinos e celas de Bravais. Princípios de difração de	QI 145
raios X. Planos cristalográficos e Índices de Miller. Ficha cristalográfica. Sólidos cristalinos (estruturas típicas: CsCl, NaCl, ZnS, CaF ₂ , entre outros).	Carga Horária
	30 h
Imperfeições em sólidos iônicos cristalinos. Defeitos estequiométricos: defeitos pontuais intrínsecos (Schottky e Frenkel) e extrínsecos (solução sólida). Não-estequiometria.	№. Aulas
Condutividade iônica.	15
Condutividade eletrônica em sólidos: teoria do orbital molecular e modelo de bandas (metal, semicondutor e isolante). Semicondutores intrínsecos e extrínsecos. Condutividade eletrônica em	2 h / semanais
função da temperatura.	Modalidade
Propriedades ópticas: laser de rubi e diodos.	Teórica
Propriedades magnéticas: susceptibilidade magnética, magnetismo em metais. Ferromagnetismo,	Oferecimento
Ferrimagnetismo e Antiferromagnetismo.	1S → Noturno
	2S → Diurno

Bibliografia

Bibliografia Básica

- L. E. Smart, E. A. Moore. Solid State Chemistry: An Introduction. Boca Raton: CRC, 2012. 465p.
- A. R. West. Basic Solid State Chemistry. 2^{nd} ed. Chichester :John Wiley, 1999. 480p.
- W.D. Callister. Ciência e Engenharia de Materiais: uma Introdução, 8ª. ed. Rio de Janeiro: LTC, 2012. 817p.

Bibliografia Complementar

D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 246 - Química Inorgânica

Ementa

Acidez e basicidade de Lewis: conceitos de dureza e moleza. Química de coordenação e de organometálicos de metais de transição.

Programa	Pré-Requisito
Ácidos e bases de Lewis: tendências periódicas. Tipos fundamentais (formação de aduto, correlacionando com orbital molecular; reações de deslocamento; metátese; solventes como ácidos ou bases; força de ácidos e bases). Considerações estruturais e fatores estéreos na força de	QG108 QG109
	Carga Horária
ácidos e bases. Ácidos duros e moles: o conceito de Pearson. Acidez e basicidade de óxidos metálicos e não-metálicos.	60 h
	№. Aulas
Compostos de coordenação: número de coordenação, estrutura, nomenclatura, isomeria. Teoria do Campo Cristalino. Teoria do Orbital Molecular. Efeito Jahn-Teller. Série espectroquímica. Efeito nefelauxético. Interpretação de espectros eletrônicos e determinação dos parâmetros do campo	30 2 x 2 h / semanais
ligante (10 Dq e B). Espectros de transferência de carga (M-L e L-M). Efeito quelato (aspectos termodinâmicos). Ligantes macrocíclicos. Mecanismos de reações de substituição em complexos	Modalidade
octaédricos e quadrados. Efeito e influência trans. Compostos lábeis e compostos inertes. Reações de oxidação-redução. Introdução à Química Bioinorgânica.	Teórica
Compostos Organometálicos do bloco d: conceitos, definições e principais ligantes (M-CO, M-PR ₃).	Oferecimento
Regra dos 18 elétrons. Ligações M-CO, M-PR ₃ . Principais reações que ocorrem na esfera de	2S → Diurno
coordenação de organometálicos, analisando seus mecanismos e os fatores que as afetam: substituição de ligantes, adição oxidativa/eliminação redutiva, inserção/migração e reação reversa. Introdução à catálise por organometálicos: definições, influência do metal e exemplos de ciclos catalíticos.	

Bibliografia

Bibliografia Básica

- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.

Bibliografia Complementar

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 345 - Química de Coordenação

Ementa

Compostos de coordenação. Teorias de Ligação aplicadas aos compostos de coordenação. Introdução à espectroscopia eletrônica. Diagrama de Tanabe-Sugano. Mecanismos de reações de substituição e de reações de transferência de elétrons.

Programa	Pré-Requisito
Compostos de coordenação: número de coordenação, estrutura, nomenclatura, isomeria.	QI 145
Teorias de ligação: campo ligante e orbitais moleculares para geometrias octaédrica, tetraédrica e quadrada.	Carga Horária
	30 h
Efeito Jahn-Teller. Série espectroquímica. Efeito nefelauxético.	Nº. Aulas
Propriedades magnéticas de compostos de coordenação.	15
Introdução à espectroscopia eletrônica (acoplamento Russel-Saunders, termos espectroscópicos e	2 h / semanais
regras de seleção). Interpretação de espectros eletrônicos e determinação dos parâmetros do campo ligante (10 Dq e B), diagramas de Orgel e de Tanabe-Sugano; espectros de transferência de	Modalidade
carga metal-ligante e ligante-metal;	Teórica
Aspectos termodinâmicos (constantes de formação, efeito quelato e potenciais de oxirredução). Ligantes macrocíclicos.	Oferecimento
Mecanismos de reações de substituição em complexos octaédricos e quadrados. Compostos lábeis	1S → Diurno
e compostos inertes.	2S → Noturno
Efeito e influência trans.	
Reações de oxidação-redução: mecanismos de esfera externa e de esfera interna.	

Bibliografia

Bibliografia Básica

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York: Harper Collins, 1993. 964p.
- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Bibliografia Complementar

- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.
- C. J. Jones. A química dos Elementos dos Blocos d e f. Porto Alegre: Bookman, 2002. 184p.
- D. Nicholls. Complexes and First-Row Transition Elements. New York: Elsevier, 1975. 215p.

Material bibliográfico selecionado pelo docente.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 446 – Aplicação de Teoria de Grupo em Espectroscopia Eletrônica e Vibracional

Ementa

Teoria de Grupo. Espectroscopias eletrônica e vibracional aplicadas a compostos inorgânicos. Interpretação de espectros.

Programa	Pré-Requisito
Teoria de grupo: representação matricial das operações de simetria, produto direto,	QI245 / QI246
construção de tabelas de caracteres por regras matemáticas e por operações de simetria sobre os graus de liberdade de uma molécula C _{2v} , representações redutíveis e irredutíveis, utilização	Carga Horária
de operadores de projeção para a construção de combinações lineares adaptadas por simetria, tabelas de correlação.	30 h
Fundamentos de espectroscopia (radiação eletromagnética-regiões/faixa de	№. Aulas
frequências/técnicas; Teorias Clássica e Quântica de interpretação da radiação).	15
Transições eletrônicas/vibracionais/rotacionais, associando-as com as regiões espectrais e	2 h / semanais
técnicas de análise.	Modalidade
Aplicações da teoria de grupo para a estrutura eletrônica de compostos de coordenação e	Teórica
organometálicos.	Oferecimento
Espectro eletrônico (absorção e emissão); espectro vibracional (IV e Raman); regras de	2S → Diurno
seleção e o efeito de acoplamento vibrônico.	2S → Noturno
Modos fundamentais ou normais de vibração (p.ex. XY ₂ , XY ₃ , XY ₄ e XY ₆) e abaixamento de simetria.	
Interpretação de espectros eletrônicos e vibracionais de compostos inorgânicos.	

Bibliografia

Bibliografia Básica

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- O. Sala. Fundamentos da Espectroscopia Raman e no Infravermelho. 2ª ed. São Paulo: Editora UNESP, 2008. 276p.
- K. Nakamoto. Infrared and Raman spectra of Inorganic and Coordination Compounds Part A and Part B. 6th ed. New York: John Wiley, 2009.
- A. B. P. Lever. Inorganic Electronic Spectroscopy. 2nd ed. Amsterdam: Elsevier, 1984. 863p.

Bibliografia Complementar

- S. F. A. Kettle. Symmetry and Structure: (Readable Group Theory for Chemists). 2nd ed. Chichester : John Wiley, 1995. 416p.
- F. A. Cotton. Chemical Applications of Group Theory. 3th ed. New York: John Wiley, 1990. 461p.
- G. M. Oliveira; Simetria de Moléculas e Cristais: Fundamentos da Espectroscopia Vibracional. Porto Alegre : Bookman, 2009. 269p.

Material bibliográfico selecionado pelo docente.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 542 - Química Inorgânica Experimental II

Ementa

Síntese de complexos de metais de transição (compostos de coordenação e organometálicos), compostos modelos bioinorgânicos e de óxidos e/ou sulfetos. Caracterização dos compostos sintetizados explorando a série nefelauxética, espectros eletrônicos, medidas de magnetismo, de dicroísmo circular, de espectroscopia vibracional, de ressonância magnética nuclear, eletroquímicas e de luminescência. Cinética de substituição de ligantes em complexos de metais de transição. Reações de intercalação. Catálise (homogênea e heterogênea).

Programa	Pré-Requisito
Preparação e caracterização de complexos de metais de transição e/ou compostos modelos	QG564 QI446 QI545
bioinorgânicos.	Carga Horária
Preparação e caracterização de organometálicos de transição-d.	120 h
Preparação de sólidos inorgânicos estendidos e efeito de tamanho nas propriedades dos sólidos. Modificação da superfície de sólidos.	№. Aulas
	15
Caracterização dos compostos sintetizados explorando diferentes técnicas de caracterização, tais como: difração de raios X, espectroscopia eletrônica, magnetismo, dicroísmo circular,	8 h / semanais
espectroscopia vibracional, ressonância magnética nuclear, eletroquímicas e de luminescência.	Modalidade
Compostos inorgânicos com aplicações em: catálise, fotocatálise, conversão de energia,	Experimental
magnetismo, sensores, eletroquímica, óptica, dentre outras.	Oferecimento
	1S → Diurno

Bibliografia

Bibliografia Básica

Material bibliográfico selecionado pelo professor.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 543 - Química Inorgânica Experimental II

Ementa

Síntese, caracterização e aplicações de compostos inorgânicos, especialmente de metais de transição.

Programa	Pré-Requisito
Preparação e caracterização de complexos de metais de transição, organometálicos de transição-d	QG650 QI446 QI545
e/ou compostos modelos bioinorgânicos.	Carga Horária
Preparação de sólidos inorgânicos estendidos e materiais nanoestruturados.	90 h
Caracterização dos compostos sintetizados explorando diferentes técnicas de caracterização, tais como: difração de raios X, espectroscopia eletrônica, magnetismo, dicroísmo circular,	№. Aulas
espectroscopia vibracional, ressonância magnética nuclear, eletroquímicas e de luminescência.	15
Compostos inorgânicos com aplicações em: catálise, fotocatálise, conversão de energia,	6 h / semanais
magnetismo, sensores, eletroquímica, óptica, dentre outras.	Modalidade
	Experimental
	Oferecimento
	1S → Sábado
Dilli C-	

Bibliografia

Bibliografia Básica

Material bibliográfico selecionado pelo professor.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

QI 545 - Química de Organometálicos

Ementa

Organometálicos do grupo principal e de metais de transição. Catálise.

Programa	Pré-Requisito
Organometálicos do grupo principal: classificação em termos das características da ligação química envolvida; estabilidade termodinâmica; métodos de preparação; estrutura e reatividade grupo a grupo (bloco s; grupos 12, 13, 14, 15 e 16, incluindo B, Si e Te)	QI345
	Carga Horária
	30 h
Organometálicos do bloco d: Regra dos 18 elétrons; principais ligantes (sigma doadores; pi receptores; sigma e pi doadores); ligações M-CO, M-PR ₃ , M-alceno e M-alcino (o modelo	№. Aulas
sinérgico); síntese, estruturas, propriedades e reatividade de metalcarbonilas binárias; compostos contendo os ligantes hidreto, alquil, acil, ciclopentadienil (incluindo metalocenos), carbenos,	15
alquilidenos e outros: preparação; reatividade; estabilidade; características da ligação; fluxionalidade;	2 h / semanais
numerian adde,	Modalidade
Principais reações que ocorrem na esfera de coordenação de organometálicos, analisando seus mecanismos e os fatores que as afetam: substituição de ligantes; adição oxidativa/eliminação	Teórica
redutiva; inserção/migração e reação reversa; ataque nucleofílico a ligante coordenado; dentre outras.	Oferecimento
	1S → Diurno
Introdução à catálise por organometálicos: definições, influência do metal, exemplos de ciclos catalíticos que incluam as reações mencionadas acima (isomerização, hidrogenação com o	2S → Noturno
catalisador de Wilkinson, hidroformilação, processo Wacker, dentre outras)	

Bibliografia

Bibliografia Básica

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.
- G. O. Spessard, G. L. Miessler. Organometallic Chemistry. Upper Saddle River, NJ: Prentice-Hall, 1997. 561p.
- R. H. Crabtree. The Organometallic Chemistry of the Transition Metals. 5th Ed. New York: John Wiley, 2009. 505p.

Bibliografia Complementar

- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.
- J. Dupont. Química Organometálica: Elementos do Bloco d. Porto Alegre : Bookman, 2005. 300p. Material bibliográfico selecionado pelo docente.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação.

UNIVERSITY OF CAMPINAS

INSTITUTE OF CHEMISTRY

Cidade Universitária "Zeferino Vaz" - Distrito de Barão Geraldo

P.O. Box 6154 - Zip Code: 13083-970 - Campinas, SP

Phone: +55 19 3521-3005 Fax: +55 19 3521-3023

e-mail: dqi@iqm.unicamp.br

English version of the courses offered at the Department of Inorganic Chemistry.

QI 145 - Chemical Interactions

Course Topics

Molecular orbital theory for polyatomic molecules. Introduction to group theory. Acids and bases.

Contents	Prerequisites
	QG 108
Molecular Orbitals Introduction to group theory: symmetry, point groups and the use of the character table in the	Course Load
classification of molecules and orbitals. Molecular orbitals adapted by symmetry. Molecular orbital theory for polyatomic molecules (single species: H ₃ and H ₃ +, H ₂ O, NH ₃ and Walsh diagrams	30 h
for molecules EH ₂); Molecular orbitals for chains of atoms, hypervalent molecules, molecules with	No. of Lectures
π bond and electron deficient molecules (examples: SF ₆ fragment B-H-B of boranes, NO ₂ -)	15
	2 h / week
Acids and Bases Bronsted acidity: H ⁺ in H ₂ O; conjugate acids and bases; acidity and basicity of solvents. Periodic	Туре
trends in Bronsted acidity: aqua-acids; oxo-acids (Pauling Rule); anhydrous oxides; amphoterism. Lewis acids and bases: periodic trends; examples of reactions: adduct formation (correlating with	Theory
the molecular orbital); displacement reactions; metathesis. Structural and steric considerations on	Offered at
the strength of acids and bases in several theories. Hard and soft acids and bases. The	1S → Daytime
interpretation of hardness/softness and usefulness of this concept. Surface acidity, for example,	2S → Nighttime
silica, alumina, aluminosilicates. Generalized concept of acids and bases. Hydrides - periodic	
trends.	

Textbooks and Reference Materials

Textbooks

- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.
- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.

Supplemental Readings

- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.
- S. F. A. Kettle. Symmetry and Structure: (Readable Group Theory for Chemists). 2nd ed. Chichester: John Wiley, 1995. 416p.
- $F.\ A.\ Cotton.\ Chemical\ Applications\ of\ Group\ Theory.\ 3^{th}\ ed.\ New\ York:\ John\ Wiley,\ 1990.\ 461p.$
- G. M. Oliveira. Simetria de Moléculas e Cristais: Fundamentos da Espectroscopia Vibracional. Porto Alegre : Bookman, 2009. 269p.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 242 - Theoretical Inorganic Chemistry

Course Topics

Atomic Structure. Periodicity. Chemical Bonding Models. Acidity and Basicity. Coordination Compounds. Introduction to Organometallic Compounds and Catalysis.

Contents	Prerequisites
Atomic Structure and Periodic Table (Revision)	QG101 QG102 / QI108 QI109
Chemical Bonding Models	Course Load
Diagram of potential energy versus internuclear distance between two hydrogen atoms. Ionic bonding and lattice energy. Covalent bonding. Concepts of Polarizability and Electronegativity.	60 h
Molecular Orbital Theory. Secondary bonding. Metallic bonding. Band theory and introduction to conductor, semiconductor and insulating materials.	No. of Lectures
Introduction to Solid State Chemistry Unit cells. Bravais lattice and the concept of close packing of atoms. Tetrahedral and octahedral	30 2 x 2 h / week
interstitials and the idea of atomic blends. Introduction to the X-ray diffraction technique.	Туре
Acids and Bases	Theory
Definition of Lewis acids and bases. Hard soft acid base theory and its usefulness.	Offered at
Coordination Chemistry Definition of coordination compounds. Chelate effect. Structural Isomers and stereoisomers. Crystal field theory. Ligand field theory. Jahn-Teller effect. Reactivity of coordination compounds; Mechanisms of ligand substitution reactions; The trans effect; Mechanisms of redox reactions.	2S → Daytime 2S → Nighttime
Introduction to Organometallic Chemistry and Catalysis Concepts, definitions and usual ligands (M-CO and M-PR ₃). The eighteen electron rule. Thermodynamic and kinetic parameters of substitution, oxidative addition and reductive elimination reaction mechanisms. Presentation of some organometallic catalytic cycles and their importance in commercial processes.	

Textbooks and Reference Materials

Textbooks

- $D.\ F.\ Shriver,\ P.\ W.\ Atkins,\ C.H.\ Langford.\ Inorganic\ Chemistry.\ 2nd.\ ed.\ Oxford\ :\ Oxford\ University\ Press,\ 1994.\ 819p.$
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.

Supplemental Readings

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 244 - Experimental Inorganic Chemistry

Course Topics

Fundamental concepts involved in chemical reactions: reactivity of species, equilibrium, stoichiometry, oxi-reduction, yield of reaction, chemical kinetics and catalysis. Reactivity of metals. Preparation of complexes of transition metals applying ligand field theory (ligand effect, coordination number and color).

Contents	Prerequisites
Studies concerning physical and chemical properties, such as: melting point, liquefaction, combustion, oxidation, decomposition and chemical equilibrium.	QG101 QG102/ QG108 QG109 Course Load
Synthesis and characterization of solids and inorganic polymers, complexes of transition metals and/or organometallic (d-block). Studies about their reactivity.	60 h
Inorganic compounds with application in: catalysis, photocatalysis, energy conversion, magnetism, sensors, electrochemistry, optics and other.	No. of Lectures
Industrial manufacture process of strategic inorganic compounds for national industry.	4 h / week Type
	Experimental
	Offered at
	2S → Daytime 2S → Nighttime

Textbooks and Reference Materials

Textbooks and Supplemental Readings

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 245 - Solid State Chemistry

Course Topics

Close packed structures. Some important crystalline structure types. X-ray diffraction. Defects and non-stoichiometric compounds. Electronic, optical and magnetic properties of solids.

Contents	Prerequisites
Close packed structures. Unit cells, crystal system and Bravais lattice. Principles of X-Ray diffraction. Lattice planes and Miller indices. Crystallographic card. Some important crystalline structure types (CsCl, NaCl, ZnS, CaF ₂ , among others).	QI 145
	Course Load
	30 h
Defects in ionic crystals. Stoichiometric defects: intrinsic defects (Schottky and Frenkel) and extrinsic defects (solid solution). Non-stoichiometric. Ionic conductivity.	No. of Lectures
Electronic conductivity in solids: molecular orbital theory and energy-band model (metals, semiconductors, and insulators). Intrinsic and extrinsic semiconductors. Electronic conductivity as a function of temperature.	15
	2 h / week
Optical properties: ruby laser and light-emitting diodes.	Туре
	Theory Offered at
Magnetic properties: magnetic susceptibility, magnetism in metals. Ferromagnetism, ferrimagnetism and antiferromagnetism.	Onered at
	1S → Nighttime
	2S → Daytime

Textbooks and Reference Materials

Textbooks

- L. E. Smart, E. A. Moore. Solid State Chemistry: An Introduction. Boca Raton: CRC, 2012. 465p.
- A. R. West. Basic Solid State Chemistry. 2nd ed. Chichester: John Wiley, 1999. 480p.
- W.D. Callister. Ciência e Engenharia de Materiais: uma Introdução, 8ª. ed. Rio de Janeiro: LTC, 2012. 817p.

Supplemental Readings

D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 246 - Inorganic Chemistry

Course Topics

Lewis acidity and basicity: hard and soft acids and bases. Coordination and organometallic chemistry of transition metals.

Contents	Prerequisites
Acids and Bases Lewis Acids and Bases: periodic trends; basic types (adduct formation correlating with OM; displacement reactions, metathesis; solvents as acids or bases; strength of acids and bases). Structural considerations and steric factors in the strength of acids and bases. Hard and soft acids: the concept of Pearson. Acidity and basicity of metal and non-metal oxides. Coordination Chemistry Coordination compounds: coordination number, structure, nomenclature, isomerism. Bonding models: molecular orbitals and crystal field theory for octahedral, tetrahedral and square planar geometries. Jahn-Teller effect. Spectrochemical series. Nephelauxetic effect. Interpretation of electronic spectra and determination of ligand field parameters (10 Dq and B); charge transfer spectra (L-M and M-L). The chelate effect (thermodynamic aspects). Macrocyclic ligands. Substitution reactions in octahedral and square planar complexes. The -trans effect and influence. Labile and inert compounds. Redox reactions.	QG108 QG109
	Course Load
	60 h
	No. of Lectures
	30 2 x 2 h / week
	Туре
	Theory
	Offered at
d-block organometallics	2S → Daytime
Concepts, definitions and main ligands (CO, PR_3). The 18 electrons rule. M-CO and M- PR_3 bonding. Main reactions occurring in the coordination sphere of organometallic, analyzing their mechanisms and the factors affecting them: Ligands replacement; Oxidative addition / reductive elimination; Insertion / migration and reverse reaction. Introduction to organometallic catalysis: definitions, influence of the metal and examples of catalytic cycles.	

Textbooks and Reference Materials

Textbooks

D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.

J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York : Harper Collins, 1993. 964p.

Supplemental Readings

G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.

C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 345 - Coordination Chemistry

Course Topics

Coordination compounds. Chemical bond theories applied to coordination compounds. Introduction to electronic spectroscopy: Tanabe-Sugano diagrams. Mechanism classifications of ligand exchange and electron transfer reactions.

Contents	Prerequisites
Coordination compounds: coordination number; molecular structure, nomenclature and isomerism.	QI 145
	Course Load
Chemical bond theories. Ligand field, molecular orbitals of octahedral, tetrahedral and square-	30 h
planar complexes	No. of Lectures
Spectrochemical Series. Nephelauxetic and Jahn-Teller effects	15
Magnetic properties of coordination compounds	2 h / week
Interpretation of electronic spectra: Russel-Saunders coupling, spectroscopic terms, Selection	Туре
rules and intensities, determination of ligand field parameters (10 Dq and Racah parameter - B), ligand to metal and metal to ligand charge transfers.	Theory
Thermodynamic Considerations (formation constants, chelate effect and redox potentials).	Offered at
Macrocyclic Ligands	1S → Daytime
Ligand exchange reactions in octahedral and square-planar complexes. Thermodynamic and kinetic considerations. Classification of Mechanisms.	2S → Nighttime
Trans effect and Trans influence	
Electron transfer reactions: mechanisms of inner and outer spheres reactions.	

Textbooks and Reference Materials

Textbooks

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York: Harper Collins, 1993. 964p.
- $C.\ E.\ Housecroft,\ A.\ G.\ Sharpe.\ Inorganic\ Chemistry.\ 4^{th}\ ed.\ Upper\ Saddle\ River.\ NJ:\ Prentice-Hall,\ 2012.\ 754p.$

Supplemental Readings

- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2nd. ed. Oxford: Oxford University Press, 1994. 819p.
- C. J. Jones. A química dos Elementos dos Blocos d e f. Porto Alegre: Bookman, 2002. 184p.
- D. Nicholls. Complexes and First-Row Transition Elements. New York: Elsevier, 1975. 215p.

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 446 - Application of Group Theory in Electronic and Vibrational Spectroscopy

Course Topics

Group Theory. Electronic and vibrational spectroscopy applied to inorganic compounds. Interpretation of spectra.

Contents	Prerequisites
Group Theory: Matricial representation of symmetry operations, direct product, character tables from mathematical rules and from symmetry operations over the degrees of freedom of a C_{2v} molecule, reductible and irreductible representations, projection operators for the build up of symmetry adapted linear combinations, correlation tables.	QI245 / QI246
	Course Load
	30 h
Fundaments of spectroscoy (electromagnetic radiation-regions/frequency ranges/techniques;	No. of Lectures
Classical and quantum theories for the interpretation of radiation).	15
Electronic/vibrational/rotational transitions, associated with spectral ranges and analytical techniques.	2 h / week
techniques.	Туре
Applications of group theory to the electronic structure of coordination and organometallic compounds.	Theory
	Offered at
Electronic spectra (absorption and emission); vibrational spectra (IR and Raman); selection rules and vibronic coupling.	2S → Daytime
	2S → Nighttime
Fundamental or normal modes of vibration (eg. XY ₂ , XY ₃ , XY ₄ and XY ₆) and symmetry breaking.	
Interpretation of electronic and vibrational spectra or inorganic compounds.	

Textbooks and Reference Materials

Textbooks

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- O. Sala. Fundamentos da Espectroscopia Raman e no Infravermelho. 2ª ed. São Paulo: Editora UNESP, 2008. 276p.
- K. Nakamoto. Infrared and Raman spectra of Inorganic and Coordination Compounds Part A and Part B. 6th ed. New York: John Wiley, 2009.
- A. B. P. Lever. Inorganic Electronic Spectroscopy. 2nd ed. Amsterdam: Elsevier, 1984. 863p.

Supplemental Readings

- S. F. A. Kettle. Symmetry and Structure: (Readable Group Theory for Chemists). 2nd ed. Chichester: John Wiley, 1995. 416p.
- F. A. Cotton. Chemical Applications of Group Theory. 3th ed. New York: John Wiley, 1990. 461p.
- G. M. Oliveira; Simetria de Moléculas e Cristais: Fundamentos da Espectroscopia Vibracional. Porto Alegre : Bookman, 2009. 269p.

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 542 - Experimental Inorganic Chemistry II

Course Topics

Synthesis of transition metal complexes (coordination and organometallic compounds), bioinorganic model compounds and oxides and/or sulfides. Characterization of the synthesized metal complexes exploring the nephelauxetic series, including measurements of electronic spectra, magnetic properties, circular dichroism, vibrational spectroscopy, nuclear magnetic resonance, electrochemical properties and luminescence. Kinetics of ligands substitution in transition metal complexes. Intercalation reactions. Catalysis (homogeneous and heterogeneous).

Contents	Prerequisites
Preparation and characterization of transition metal complexes and/or bionorganic model	QG564 QI446 QI545
compounds.	Course Load
Preparation and characterization of organometallic compounds of d-block elements.	120 h
Preparation of extended inorganic solids. Impact of size effects in solids. Surface modification of solids.	No. of Lectures
	15
Characterization of the synthesized compounds, exploring several techniques and properties such as X rays diffraction, electronic spectroscopy, circular dichroism, vibrational spectroscopies,	8 h / week
nuclear magnetic resonance, electrochemical, luminescence and magnetic properties.	Туре
Application of inorganic compounds in: catalysis, photocatalysis, energy conversion, magnetism, sensors, electrochemistry, optics, among others.	Experimental
	Offered at
	1S → Daytime

Textbooks and Reference Materials

Textbooks and Supplemental Readings

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 543 - Experimental Inorganic Chemistry II

Course Topics

Synthesis, characterization and applications of inorganic compounds, especially transition metal.

Contents	Prerequisites
Preparation and characterization of transition metal complexes, organometallic compounds of d-block elements and/or bionorganic model compounds.	QG650 QI446 QI545
	Course Load
Preparation of extended inorganic solids and nanostructured materials.	90 h
Characterization of the synthesized compounds, exploring several techniques and properties such as X rays diffraction, electronic spectroscopy, circular dichroism, vibrational spectroscopies,	No. of Lectures
nuclear magnetic resonance, electrochemical, luminescence and magnetic properties.	15
Application of inorganic compounds in: catalysis, photocatalysis, energy conversion, magnetism,	6 h / week
sensors, electrochemistry, optics, among others.	Туре
	Experimental
	Offered at
	1S → Saturday

Textbooks and Reference Materials

Textbooks and Supplemental Readings

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.

QI 545 - Organometallic Chemistry

Course Topics

Organometallic chemistry of the main group and transition metals. Catalysis.

Contents	Prerequisites
Main group organometallic compounds: classification as a function of the chemical bond; thermodynamic stability; preparation methods; structure and reactivity (s block; groups 12, 13, 14, 15 and 16, including B, Si and Te)	QI345
	Course Load
	30 h
Organometallic compounds of d-block elements: 18-electrons rule; common types of ligands (sigma-donors and pi-acceptor ligands; sigma and pi-donor ligands); M-CO, M-PR ₃ , M-alkene and M-alkyne bonds (the synergic model); synthesis, structures, properties and reactivity of binary metal-carbonyl compounds; compounds bearing hydride, alkyl, acyl, cyclopentadienyl (including metallocenes), carbene, alkylidene and other ligands: preparation; reactivity; stability; characteristics of the bonding; fluxionality.	No. of Lectures
	15
	2 h / week
	Туре
Types of organometallic reactions, mechanisms and involved factors: ligand substitution; oxidative addition/reductive elimination; insertion/migration and reverse reaction; nucleophilic attack to coordinated ligand, among others.	Theory
	Offered at
Introduction to catalysis by organometallic compounds: definitions, effects of the metal, examples	1S → Daytime
of catalytic cycles involving the reactions mentioned above (isomerization, hydrogenation with Wilkinson's catalyst, hydroformylation, Wacker process, among others).	2S → Nighttime
whikinson's catalyst, hydrolormylation, wacker process, among others).	

Textbooks and Reference Materials

Textbooks

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4^{th} ed. New York: Harper Collins, 1993. 964p.
- G. O. Spessard, G. L. Miessler. Organometallic Chemistry. Upper Saddle River, NJ: Prentice-Hall, 1997. 561p.
- R. H. Crabtree. The Organometallic Chemistry of the Transition Metals. 5th Ed. New York: John Wiley, 2009. 505p.

Supplemental Readings

C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4^{th} ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

J. Dupont. Química Organometálica: Elementos do Bloco d. Porto Alegre : Bookman, 2005. 300p.

Textbooks and reference materials selected by the Professor.

Grading Policy

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina.