

Comissão de Segurança e Ética Ambiental Instituto de Química Gerenciamento de Resíduos

Normas de Gerenciamento de Resíduos Químicos do Instituto de Química da UNICAMP

(Aprovadas na 224ª sessão da Congregação e Resolução da Congregação IQ 134/2005 em 23/11/2005)

CONSIDERAÇÕES GERAIS

- 1. O Programa de Gerenciamento de Resíduos Químicos do Instituto de Química tem como diretriz a minimização, a reciclagem/reutilização (valorização), a substituição por reagentes menos tóxicos e a destinação final adequada dos resíduos químicos gerados nos laboratórios do IQ. Abordaremos nesse documento um resumo sobre alguns procedimentos gerais de tratamento/destruição para os principais resíduos gerados nos laboratórios do Instituto de Química da Unicamp. A Comissão de Segurança e Ética Ambiental coloca-se a disposição da Comunidade do Instituto de Química para orientar sobre procedimentos que podem ser adotados no gerenciamento de resíduos específicos.
- 2. A periculosidade e as concentrações dos resíduos devem ser bem conhecidos. Informações sobre periculosidade (toxicidade, reatividade, inflamabilidade e compatibilidade de inúmeras substâncias químicas) podem ser encontradas em MSDS (Material Safety Data Sheets) e FISPQ (Ficha de Identificação e de Segurança de Produtos Químicos), disponíveis em vários sites da internet (alguns estão listados na Seção de Bibliografia deste documento). Na Biblioteca do IQ também podem ser encontrados catálogos da Sigma-Aldrich com MSDS para algumas substâncias.

NORMAS GERAIS

- 1. Antes de qualquer segregação ou tratamento dos resíduos deve-se observar a compatibilidade química das substâncias que compõe os resíduos (veja tabelas de incompatibilidade na página 4 deste documento).
- 2. A **responsabilidade** pela correta segregação e tratamento dos resíduos é do **pesquisador** no caso de resíduos gerados nos laboratórios de pesquisa.

- 3. A **responsabilidade** pela correta segregação e tratamento dos resíduos é do **técnico responsável** no caso de resíduos gerados nos laboratórios de ensino, planta piloto e sala de aparelhos.
- 4. Acumule o mínimo de resíduos em seu laboratório.
- 5. Os resíduos passíveis de tratamento devem ser tratados no **laboratório que o gerou**.
- 6. Grandes volumes de resíduos devem ser tratados na Planta Piloto -IQ.
- 7. Os resíduos devem estar claramente rotulados.
 - Nome da substância química ou da mistura (com as proporções)
 - Data
 - Local
 - Responsável pelo resíduo
- 8. Após tratamento, os resíduos devem ser encaminhados para a Comissão de Segurança e Ética Ambiental (recebimento todas as quintas-feiras). Os resíduos serão pesados para determinar os custos necessários para a destinação final. Uma referência atual é de R\$ 3,00/ kg, no caso de incineração. Os custos relativos à destinação final ficarão por conta dos docentes e da Diretoria do IQ, respectivamente, nos casos dos resíduos gerados nos projetos de pesquisa e aqueles gerados nos laboratórios de ensino, planta piloto e salas de aparelhos.
- 9. Sempre consulte os técnicos da Comissão de Segurança e Ética Ambiental em caso de dúvida sobre segregação, tratamento ou descarte de resíduos específicos.

VIAS DE ELIMINAÇÃO DOS RESÍDUOS

1- Resíduos ou compostos que podem ser descartados diretamente na pia

Uma vez que o Instituto de Química usa o esgoto comum (doméstico), os descartes diretamente na pia SOMENTE podem ser feitos com um número limitado de tipos de resíduos, que estão discriminados a seguir (A-C). O descarte deve ser sempre feito com água corrente.

A- Substâncias com características ácido-base, (<u>não contaminadas com produtos químicos perigosos</u>) que tornam o pH da água < 6 ou pH > 8, como por ex HCl, H₂SO₄, HNO₃ NaOH, KOH, Ca(OH)₂ deverão ser neutralizados antes do descarte <u>de tal maneira a apresentar um pH>6 ou <8.</u>

B- Cátions:

C- Ânions:

2- Resíduos sólidos que podem ser descartados no lixo

Compostos quando não passíveis de reciclagem e outros materiais de laboratório não contaminados com produtos químicos perigosos, tais como:

adsorventes cromatográficos: sílica, alumina. A sílica, após avaliação da planta piloto poderá ser reciclada.

papel de filtro

luvas e outros materiais descartáveis

3-Segregação e tratamento de resíduos químicos até destinação final

3.2- Segregação de resíduos químicos adotada no IQ:

A seguir estão listadas as categorias mais comuns de resíduos gerados no IQ-UNICAMP.

Para a segregação e o tratamento de resíduos que **não constam** da listagem citada neste documento, deve-se consultar bibliografia especializada ou a Comissão de Segurança e Ética Ambiental do IQ.

A- Inorgânicos

Soluções aquosas de metais pesados, ácidos, bases, sulfetos, cianetos, mercúrio metálico (recuperação)

B- Orgânicos

Solventes halogenados e não halogenados (ésteres, éteres, hidrocarbonetos cetonas, alcóois e fenois)

Aminas

Acetonitrila (tratamento: veja item 4-I).

Hexano e mistura Hexano-Acetato, Alcool Etilico-Acetato de Etila (tratamento: veja item 4-I).

Estão indicadas a seguir, **tabelas sobre** *incompatibilidades químicas* que deverão ser consultadas antes de ser realizada qualquer mistura de produtos químicos.

Tabela 1: Misturas que devem ser evitadas

Grupo A	Grupo B
Ácidos	Bases
Agentes Oxidantes	Agentes Redutores
Cloratos	Amônia
Cromatos / Dicromatos	Carbono (Carvão)
Halogênios	Hidretos Metálicos
Nitratos / Ácido Nítrico	Compostos Orgânicos
Permanganatos	Enxofre
Perssulfatos	Fósforo
Percloratos	
Peróxidos	

Reatividade dos Grupos Químicos

A Tabela 2 apresenta de forma mais específica as misturas que não devem ser efetuadas, de acordo com os Grupos separados e mencionados na Tabela 1.

Tabela 2: Incompatibilidade de Produtos Químicos

Grupo A	Grupo B
Acetileno e Derivados	Cobre, Prata, Mercúrio, etc, Halogênios
Amônia	Mercúrio e Prata Halogênios
Metais Alcalinos	Água
Metais Alcalinos Terrosos	Ácidos
Carbetos	Agentes Oxidantes
Hidretos	Halogênios
Hidróxidos	
Metais	
Óxidos	
Azidas	Ácidos
	Agentes Oxidantes
Cianetos Inorgânicos	Ácidos
Mercúrio e Amálgamas	Acetileno
	Amônia
	Ácido Nítrico
	Azoneto de Sódio
Nitratos	Agentes Redutores
	Ácidos
Ácido Nítrico	Bases
	Metais
	Cromatos
	Permanganatos
	Sulfetos
	Ácido Sulfúrico
	Agente Redutores
Compostos Orgânicos	Agentes Oxidantes
Ácido Sulfúrico	Bases
	Permanganato de Potássio
	Água
Sulfetos	Ácidos
Pentóxido de Fósforo	Alcóois
	Bases Fortes
	Oxigênio
Anidridos de Ácidos Orgânicos	Bases
Cloretos de Ácidos Orgânicos	Aminas
_	Compostos Hidroxiliados
	Água

Compostos Reativos a Água

Muitas substâncias jamais deverão entrar em contato com meios aquosos. Uma lista de algumas substâncias está mostrada na Tabela 3.

Tabela 3: Substância que não devem entrar em contato com água

Nome Genérico	Exemplos / Fórmula Química
Metais Alcalinos	Sódio, Potássio, Lítio, etc.
Hidretos de Metais Alcalinos	NaBH ₄ , LiAl H ₄ , NaH
Reagentes de Gringnard	R – Mg – Cl
Haletos de Ácidos e de Não Metais	POCl ₃ , PCl ₅ , SiCl ₄ , PCl ₃ ,BCl ₃ , SO _{2,} CL ₂
Pentóxido de Fósforo	P_2O_5
Carbeto de Cálcio	Ca C ₂
Haletos e Anidridos de Ácidos Orgânicos	R CO CI (RCO) ₂ O

Misturas que devem ser evitadas

Existem Algumas misturas de compostos químicos que devem ser evitadas. Uma lista está apresentada na Tabela 4.

Tabela 4: Lista de algumas misturas que devem ser evitadas

Acetona	+ Clorofórmio em presença de Base
Acetileno	+ Cobre, Prata, Mercúrio, etc.
Amônia	+ Halogênios
Carvão	+ Agente Oxidante
Ácido Nítrico	+ Ácido de Anidrido Acético
Hipoclorito de Sódio	+ Amina
Ácido Pícrico	+ Chumbo, Prata, etc
Cloro	+ Álcool
Éter Etílico	+ Cloro
Sódio	+ Cloreto de Alquila

4 - Tratamentos dos principais resíduos gerados no IQ - Unicamp

Apresentamos neste item os tratamentos para descarte de substâncias químicas freqüentemente encontradas nos laboratórios do IQ - UNICAMP. Procedimentos não descritos nessa apostila poderão ser encontrados nas obras citadas no item Bibliografia.

OBSERVAÇÃO IMPORTANTE

"Todos os procedimentos, descritos a seguir, devem ser efetuados em capela com exaustão adequada, fazendo-se uso de equipamentos de proteção individual necessários". Consulte FISPQ e/ou Comissão de Segurança e Ética.

A - Ácidos:

Para neutralizá-los deve-se utilizar hidróxidos ou carbonatos, o pH deverá ser monitorado e estar entre 6 e 8, se necessário utilizar banho de gelo. Após a neutralização, descartar lentamente na pia sob água corrente.

B - Bases:

Para as bases recomenda-se utilizar ácido clorídrico ou ácido sulfúrico; o pH também deverá ser monitorado e estar entre 6 e 8, se necessário utilizar banho de gelo. Após a neutralização, descartar lentamente na pia sob água corrente.

C - Metais Pesados:

Devem ser precipitados na forma de hidróxidos. Em alguns casos como mercúrio a precipitação deve ser feita com sulfeto (consulte a Tabela 5).

Inconveniente: há dificuldade com a filtração das soluções fortemente alcalinas. Entretanto as soluções quentes contendo 5% de hidróxido de sódio podem ser filtradas usando papel de filtro.

A maioria dos íons metálicos é precipitada como hidróxido ou óxido em alto pH. Contudo, vários precipitados se redissolvem em excesso de base. Por isso é necessário controlar cuidadosamente o pH em alguns casos.

A Tabela 5 mostra as faixas de pH recomendadas para precipitação de muitos cátions em seu estado de oxidação mais comum.

Tabela 5: Faixas de pH para Precipitação de Metais (hidróxidos ou óxidos)

Cátions	Faixa (pH)
Ag ⁺¹ Al ⁺³	9
Al ⁺³	7—8
As ⁺³ As ⁺⁵ Au ⁺³ Be ⁺²	Precipita como sulfeto
As ⁺⁵	Precipita como sulfeto
Au ⁺³	7 — 8
Be ⁺²	7—8
Bi ⁺³ Cd ⁺² Co ⁺² Cr ⁺³ Cu ⁺¹ Cu ⁺² Fe ⁺²	7
Cd ⁺²	7
Co ⁺²	8
Cr ⁺³	7
Cu ⁺¹	9
Cu ⁺²	7
Fe ⁺²	7
Fe ⁺³	7
Ga ⁺³	7—8
Ge ⁺⁴	6—8
Hf ⁺⁴	6—7
Hg ⁺¹ Hg ⁺²	8
Hg ⁺²	8

1+3	2 40
In ⁺³	6 — 13
Ir ⁺⁺	6—8
Ir ⁺⁴ Mg ⁺²	9
Mn ⁺²	6—8 9 8
Mn ⁺⁴	7
Mo ⁺⁶	Precipita como sal de Ca
Nb ⁺⁵	1 → 10 8
Ni ⁺²	8
Os ⁺⁴	7 → 8
Pb ⁺²	7 → 8
Pd ⁺²	7 → 8
Pd ⁺⁴	7 → 8
Mn ⁺² Mn ⁺⁴ Mo ⁺⁶ Nb ⁺⁵ Ni ⁺² Os ⁺⁴ Pb ⁺² Pd ⁺² Pd ⁺⁴ Pt ⁺² Re ⁺³ Re ⁺⁷	$7 \rightarrow 8$ 6
Re ⁺³	6
Re ⁺⁷	Precipita como sulfeto
Rh ⁺³	7 → 8
Ru ⁺³	7 → 8 7
Sb ⁺³	7 → 8
Sb ⁺⁵	7 → 8
Rh ⁺³ Ru ⁺³ Sb ⁺³ Sb ⁺⁵ Sc ⁺³ Sc ⁺⁴ Se ⁺⁶ Sn ⁺² Sn ⁺⁴ Ta ⁺⁵ Te ⁺⁶ Te ⁺⁶ Th ⁺⁴ Ti ⁺³ Ti ⁺⁴	$7 \rightarrow 8$ $7 \rightarrow 8$ 8
Se ⁺⁴	Precipita como sulfeto
Se ⁺⁶	Precipita como sulfeto
Sn ⁺²	7 → 8
Sn ⁺⁴	7 → 8
Ta ⁺⁵	1 → 10
Te ⁺⁴	Precipita como sulfeto
Te ⁺⁶	Precipita como sulfeto
Th ⁺⁴	6
Ti ⁺³	8
	8
TI ⁺³	9
V ⁺⁴	7 → 8
V ⁺⁴ V ⁺⁵ W ⁺⁶ Zn ⁺² Zr ⁺⁴	7 → 8
W ⁺⁶	Precipita como sal de Ca
Zn ⁺²	7 → 8
Zr ⁺⁴	6 → 7
	· ·

Observações:

- 1- Segregue os resíduos contendo Cd, Hg e Pb dos demais metais.
- 2- Após a precipitação, recomenda-se que o precipitado seja decantado e, posteriormente o sobrenadante seja sifonado. Faça um teste para verificar se o sobrenadante sifonado está isento dos metais pesados. Filtre então o material que restou após a sifonação em papel filtro. Coloque os papéis filtro sobre folha de papel alumínio, em assadeira e seque em estufa. Embale e rotule os resíduos e os encaminhe para a Comissão de Segurança e Ética Ambiental.

D - Cianetos Inorgânicos

Reagentes necessários para o tratamento:

Hidróxido de sódio 10%

Hipoclorito de sódio solução de 2 a 5%

Solução recém preparada de sulfato ferroso aquoso 5%

Solução de cloreto férrico 1%

Solução de ácido clorídrico 6 mol/L

Procedimento

Diluir o resíduo de cianeto até uma concentração inferior à 2%.

Adicione lentamente, sob agitação, solução hidróxido de sódio 10% (5 mL para cada 50 mL de solução de cianeto), e 60-70 mL de água sanitária (solução de hipoclorito). Deixar em repouso por algumas horas e fazer o seguinte teste para verificar a presença de cianeto na solução:

Num tubo de ensaio colocar cerca de 1 mL da solução e adicionar 2 gotas de solução recém preparada de sulfato ferroso aquoso 5%.

Ferver por 30 segundos, esfriar a temperatura ambiente a adicionar 2 gotas de solução de cloreto férrico 1%.

A seguir acidificar com HCl 6mol/L (lentamente adicionar ácido concentrado a um volume igual de água fria).

Se cianeto estiver presente, será formado um precipitado azul, deve-se adicionar mais hipoclorito de sódio de 2 a 5% à solução e o teste repetido, até que não se forme mais o precipitado.

Despejar a solução na pia com água abundante com no mínimo 50 vezes o volume desta sobre a solução.

E - Agentes oxidantes

Hipocloritos, Cloratos, Bromatos, Iodatos, Periodatos, Peróxidos e Hidroperóxidos inorgânicos, Cromatos e Dicromatos, Molibdatos, Manganatos e Permanganatos podem ser reduzidos por hiposulfito de sódio.

O excesso de hiposulfito deverá ser destruído com (peróxido de hidrogênio) H₂O₂. Diluir a 3% e descartar na pia.

F- Sulfetos inorgânicos

Precipitar na forma de sulfeto de Fe(II).

Decantar o precipitado, que deve ser descartado nos resíduos de metais.

O sobrenadante pode ser descartado na pia após diluição, caso não contenha metais pesados/tóxicos.

G - Haletos que reagem violentamente com água

G₁ - **Metálicos** (TiCl₄, SnCl₄, AlCl₃, ZrCl₄)

Adicionar lentamente os haletos à água em um balão de 3 bocas, com resfriamento (banho de gelo) e agitação constante.

A solução resultante deve ser tratada como resíduo de metais.

G₂ - Haletos ácidos de não-metais (BCl₃, PCl₃, SiCl₄, SOCl₂, SO₂Cl₂, PCl₃)

O procedimento descrito a seguir pode ser usado para tratar os haletos incluídos neste item, mas também pode ser utilizado na destruição de:

RCOX, RSO₂X, (RCO)₂O

Colocar em um balão de 3 bocas, provido de termômetro, funil de adição e agitador mecânico, 600 mL de NaOH 2,5 molL⁻¹.

Adicionar lentamente o resíduo (através do funil de adição) sob agitação constante.

Se a temperatura aumentar com a adição do resíduo, deve-se continuar a adição do mesmo, no entanto, lentamente e sem aquecimento. Se isto não ocorrer, aquecer o balão até cerca de 90 °C, antes de continuar a adição do resíduo.

Continuar o aquecimento até que solução fique clara.

Resfriar a mistura até a temperatura ambiente.

Neutralizar a mistura para pH 7 e descartar na pia, lentamente e sob água corrente

OBSERVAÇÕES IMPORTANTES

- 1. Pentacloreto de Fósforo (PCl₅) e outros sólidos, devem ser tratados em um béquer, ao invés de balão de 3 bocas, pois tendem a endurecer. Colocar o béquer com gelo e pela metade e, depois que o gelo derreter, se a mistura ainda não se solubilizou completamente, aquecer ligeiramente.
- 2. S₂Cl₂ forma sulfeto de sódio (Na₂S) e deve passar pela destruição de sulfetos antes de ser descartado na pia

H -Aminas aromáticas

As aminas aromáticas devem ser oxidadas por permanganato de potássio (KMnO₄) em meio ácido na proporção de 0,2 mol KMnO₄ para 0,01 mol de amina, em acido sulfúrico (H₂SO₄) 2 mol.L⁻¹. Manter a mistura a temperatura ambiente por 8 horas. A seguir adicione sulfato ácido de sódio (NaHSO₄) para destruir o excesso de permanganato (MnO₄).

Neutralizar o produto com NaOH, diluir e descartar na pia sob água corrente.

I – Solventes orgânicos – RECICLAGEM

A planta piloto do IQ poderá reciclar os seguintes solventes e misturas de solvente:

Hexano, mistura Hexano-Acetato, Alcool Etilico e Acetato de etila.

Acetonitrila: encaminhar para a planta piloto para tratamento.

Bibliografia

- 1- Gerenciamento de Resíduos: http://lqa.iqm.unicamp.br
- 2- Manual de Produtos Químicos Perigosos:

CETESB – http://www.cetesb.sp.gov.br/Emergencia/emergencia.asp

3- MSDS/FISPQ -

http://www.bt.cdc.gov/agent/espanol/agentlistchem.asp

http://www.cdc.gov/niosh

http://www.jtbaker.com/asp/Catalog.asp

http://www.chem.sis.nlm.nih.gov/chemid

http://www.siafa.com.ar/index recursos.htm

http://toxnet.nlm.nih.gov/

http://www.cetesb.sp.gov.br/Emergencia/produtos/produto consulta nome.asp

http://www.whitemartins.com.br/site/fispq/index.jsp?dir=gases

http://www.eq.uc.pt/~mena3/

http://www.braskem.com.br/braskem4/servlet/wrd/run/wfispc03.executa

http://chem.sis.nlm.nih.gov/chemidplus/

- 4- CONAMA http://www.mma.gov.br/port/conama/
- 5- Manual de Segurança para o Laboratório Químico, Nivaldo Bacan Lauro E.S. Barata (1982)
- 6- Jardim, Wilson de Figueiredo. Gerenciamento de resíduos químicos em laboratórios de ensino e pesquisa. Química Nova, Out 1998, vol 21, n⁰ 5, p.671-673. ISSN 0100-4042.
- 7- Prudent Pratices for Disposal of chemicals from Laboratories, Committee of Hazardous Substances in the Laboratory, Washington D.C., 1983;
- 8- *M. A. Armour*, Hazardous Laboratory Chemicals Disposal Guide, CRC Press, 1991.
- 9- Toxic and Hazardous Industrial Chemicals Safety Manual, Japan, 1982
- 10-Robert E. Lenga, *The Sigma-Aldrich Library of Chemical Safety Data*, Vol. 1 e 2, 1988
- 11-Destruction of Hazardous Chemicals in the Laboratory; George Lunn
- 12- Handbook of Laboratory Safety, Norman V Steere 2ed.
- 13-Bretherick, L; Harzadous in Chemical Laboratory, 3ed, CRC Press, 1991.
- 14-Pitt, M.J. and Pitt, E.; Handbook of Laboratory Waste Disposal, John Wiley & Sons New York, 1985.