

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMS AND BIBLIOGRAPHY

Subject	
Code	Name
Q0424	Fundamental concepts in Nuclear Magnetic Resonance Spectroscopy

Vector

OF:S-5 T:002 P:000 L:000 O:000 D:000 HS:002 SL:002 C:002 AV:N EX:S FM:75%

Pre requirement QO321

Summary

Fundamental concepts in NMR, structural determination and spectral assignments

Program

1 – Fundamental concepts

angular momentum, magnetic moment, active nuclei in homogeneous magnetic field, population of spin states, resonance phenomenon;

2 - Nuclear Magnetic Resonance Spectroscopy (NMR)

Basic NMR components (inner coil and probes), signal detection, Fourier transform, sample preparation, deuterated solvents (lock)

3 – Measured NMR parameters

Chemical shift (δ)

Shielding constant and chemical shift, diamagnetic and paramagnetic shielding, reference compound, chemical shift range in ¹H NMR spectra, signal intensity/area (integrals) *Scalar Coupling constant (J*)

Origin for the scalar spin-spin coupling constant (J), 2nI + 1 rule, signal patterns, Pascal triangle, homonuclear and heteronuclear couplings

4- ⁿJ_{HH} coupling constants

Vicinal ${}^{3}J_{HH}$ couplings (Karplus equation), Geminal ${}^{2}J_{HH}$ couplings (positive and negative couplings), long range coupling (allyl groups), coupling in rigid and flexible molecules (conformation), keto-enol tautomerism; diastereotopic hydrogens, chemical and magnetic equivalence (first and second order spin system)

5- ¹³C NMR spectra

¹³C nucleus, ¹H-coupled and ¹H-decoupled ¹³C NMR spectra, ¹³C NMR chemical shift range 6-Spectral assignments

Assignment of ¹H and ¹³C NMR signals and structural determination for saturated and unsaturated organic compounds, aromatic and heteroaromatic compounds. 7 - NMR for other nuclei

 ^{1}H and ^{13}C NMR spectra for ^{19}F and/or ^{31}P containing compounds, quadrupolar nuclei (^{2}H and ^{14}N) and its effects on ^{1}H and ^{13}C NMR spectra, ^{1}H NMR spectra for ^{15}N containing molecules - comparison with ^{14}N containing molecules.

8- Advanced NMR experiments

¹³C DEPT edited; 2D homonuclear (COSY, TOCSY and NOESY) contour plots, heteronuclear HSQC and HMBC contour plots.

Bibliography

- 1. Silverstain, Bassler, Morril, Identificação Espectrométrica de Compostos Orgânicos.
- 2. Friebolin, basic One-and-Two-Dimensional NMR Spectroscopoy, 2 ed, 1993.
- 3. Pavia, Lampman, Kriz, Introduction to Spectroscopy, 2 ed, 1996.

Evaluation criteria

For grading policy, see: Regimento Geral de Graduação, Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina. Students are required to attend 75 % of the lectures. For further details, see: Regimento Geral de Graduação, capítulo VI, seção X, artigo 72.