

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

2 º Semestre 2022

Disciplina	
Código	Nome
QG464	Laboratório Integrado

Turmas	Horário	Local
Α	Sexta-feira: 08:00-12:00	LQ71
В	Sexta-feira: 08:00-12:00	LQ72
С	Sexta-feira: 14:00-18:00	LQ71
D	Sexta-feira: 14:00-18:00	LQ72

Docentes

Edvaldo Sabadini; sabadini@unicamp.br; B-135

Juliano Alves Bonacin; jbonacin@unicamp.br; I-113

Leandro Wang Hantao; wang@unicamp.br; A2-100

Ronaldo Aloise Pilli; rapilli@unicamp.br; D-353

Forma de Condução/Organização da Disciplina e das Avaliações

A plataforma Google Classroom será o principal meio de comunicação para postagem de avisos, organização do material pré-aula e pós-aula e envio de trabalhos e relatórios. Dúvidas e esclarecimentos serão comunicados usando o mural de mensagens. Esta disciplina explora o aprendizado baseado em projetos, no qual o principal objetivo é o incentivo dos alunos para que aprendam de maneira autônoma e participativa, apresentando problemas e situações reais do profissional da química. O conteúdo da disciplina poderá ser apresentado tanto pela metodologia clássica, assim como pelo método da aula invertida (flipped classroom).

Os alunos das turmas A/B ou C/D serão divididos em 04 grupos de trabalho. Cada docente será o instrutor de um módulo e terá 03 aulas práticas consecutivas para desenvolver um único projeto. Poderá haver uma divisão adicional do grupo de trabalho em subgrupos (4-5 integrantes) a depender do módulo. Ao longo do semestre, cada grupo de trabalho terá desenvolvido 04 módulos distintos.

Descrição dos módulos:

Módulo 1 – Aromas & Fragrâncias; Prof. Ronaldo / Theodora Wrobel Von Zuben

Módulo 2 – Hidrogênio; Prof. Juliano / Mariana Bianchini Silva

Módulo 3 – Formulações Agroquímicas; Prof. Edvaldo / Laura Menezes Silva

Módulo 4 – Formulações ecológicas; Prof. Leandro / Juliana Crucello

Material de apoio: O material pré-aula será disponibilizado com 7 dias de antecedência da data da aula. O material pós-aula será disponibilizado em até 2 dias após a aula.

GR 74/2021: Lembramos também que a GR 74/2021 prevê o uso obrigatório de máscara de proteção.

Afastamentos: Recomendamos que os alunos com suspeita de covid-19 entrem em contato imediatamente POR EMAIL com a Secretaria de Graduação, com o coordenador da disciplina (LWH) em cópia, para providenciar o afastamento do aluno.

Prazos de Entrega das Atividades e dos Resultados das Avaliações

Avaliações: notas do módulo (M): cada módulo terá uma forma de avaliação individual ou em grupo — a critério do instrutor. A entrega da atividade deverá ser feita pelo Google Classroom em até 07 dias após a conclusão do módulo. Entrega posterior implicará na redução da nota referente ao trabalho desenvolvido (-2,0 pontos / dia de atraso).

Nota do seminário (S): no início da disciplina serão atribuídos projetos aos grupos de trabalho. Cada grupo terá apenas um único tema relacionado ao módulo atribuído. O grupo deverá ser dividido em 4 subgrupos de trabalho. Ao final da disciplina, cada subgrupo deverá apresentar 01 seminário com 15 minutos de duração. Os seminários devem ser produzidos ao longo do semestre com o auxílio do instrutor. As apresentações serão intercaladas por sessões de perguntas e respostas. A avaliação da apresentação levará em consideração a qualidade da apresentação (organização e clareza), conteúdo técnico (domínio do conteúdo, uso correto dos termos, referências bibliográficas), organização (gerencia mento de tempo e complementariedade de tema entre os seminários de um mesmo grupo), engajamento do subgrupo e da turma (participação da sessão de perguntas e respostas).

Os slides em formato PDF devem ser disponibilizados pelo Google Classroom na data da apresentação.

Distribuição dos temas: Grupo A (Módulo 1), Grupo B (Módulo 2), Grupo C (Módulo 3), Grupo D (Módulo 4). Informações específicas sobre os seminários serão divulgadas usando o link abaixo.

https://docs.google.com/spreadsheets/d/1tXc9d_xf4t-OIEjQjlvMhoZe34mBMIAdsZAfM0hE1uM/edit?usp=sharing

Critérios de Avaliação e Aprovação

O critério de avaliação será individual e definido como:

N = (M1 + M2 + M3 + M4 + S) / 5

onde N: nota da disciplina, M1: nota do módulo 1, M2: nota do módulo 2, M3: nota do módulo 3, M4: nota do módulo 4, e S: nota do seminário.

Se N \geq 5,0: o aluno estará aprovado na disciplina desde obtenham notas mínimas de \geq 3,0 nos módulos (M1, M2, M3, M4).

Se N < 5,0 ou M < 3,0: Exame.

Em caso de exame, a nota final da disciplina (NF) será:

NF: (N + NE) / 2; Se NF $\geq 5,0$: aprovado; NF < 5,0: Reprovado

onde NE: nota do exame.

Forma de Atendimento Extraclasse

O discente deve agendar o atendimento extraclasse diretamente com o docente/PED.

Calendário	Calendário		
Data	Atividade		
19/08	Apresentação da disciplina		
1º Rodada			
02/09	Grupo A (M1), Grupo B(M2), Grupo C(M3), Grupo D(M4)		
09/09	Grupo A (M1), Grupo B(M2), Grupo C(M3), Grupo D(M4)		
16/09	Grupo A (M1), Grupo B(M2), Grupo C(M3), Grupo D(M4)		
2ª Rodada			
23/09	Grupo A (M2), Grupo B(M3), Grupo C(M4), Grupo D(M1)		
30/09	Grupo A (M2), Grupo B(M3), Grupo C(M4), Grupo D(M1)		
07/10	Grupo A (M2), Grupo B(M3), Grupo C(M4), Grupo D(M1)		
3º Rodada			
14/10	Grupo A (M3), Grupo B(M4), Grupo C(M1), Grupo D(M2)		
21/10	Grupo A (M3), Grupo B(M4), Grupo C(M1), Grupo D(M2)		
04/11	Grupo A (M3), Grupo B(M4), Grupo C(M1), Grupo D(M2)		
	4ª Rodada		
11/11	Grupo A (M4), Grupo B(M1), Grupo C(M2), Grupo D(M3)		
18/11	Grupo A (M4), Grupo B(M1), Grupo C(M2), Grupo D(M3)		
25/11	Grupo A (M4), Grupo B(M1), Grupo C(M2), Grupo D(M3)		
02/12	Seminários (Dia 1)		
09/12	Seminários (Dia 2)		

22 a 27/08 - Semana da Química - não haverá aula para as disciplinas dos cursos 05/50.

07/09 - Feriado/Expediente Suspenso - Não haverá atividades

12/10 - Feriado/Expediente Suspenso - Não haverá atividades

18/10 - Avaliação e discussão de cursos - Não haverá aula

28 e 29/10 - Feriado/Expediente Suspenso - Não haverá atividades

02/11 - Feriado/Expediente Suspenso - Não haverá atividades

14 e 15/11 - Feriado/Expediente Suspenso - Não haverá atividades

08 a 10/12 - Feriado/Expediente Suspenso - Não haverá atividades

08 a 14/12 - Semana de Estudos

15 a 21/12 - Semana de Exames

Outras informações relevantes

Nada a declarar.

SEGUEM A EMENTA, PROGRAMA E BIBLIOGRAFIA

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMAS E BIBLIOGRAFIAS

Disciplina		
Código	Nome	
QG464	Laboratório Integrado	

Vetor

OF:S-5 T:000 P:000 L:004 O:000 D:000 HS:004 SL:004 C:004 AV:N EX:S FM:75%

Pré-Req QG108 QG109

Ementa

Experimentos de natureza interdisciplinar abrangendo diferentes métodos de preparação, caracterização e análises de fenômenos envolvidos na preparação de produtos de tais como preparação de biodiesel e de solvente industrial, síntese e fomulação de fármacos, etc... utilizando técnicas e procedimentos tais como espectroscopia de IV, RMN, fluorescência de raios X, espectrometria de massa, reologia, análise termogravimétrica, determinação de área superficial, entre outros.

Programa

Desenvolvimento de experimentos que integram as diversas áreas da Química e que ilustram a formação teórica adquirida nos semestres anteriores. Utilização de técnicas de síntese química, entendimento dos fenômenos envolvidos e análise e determinação de estrutura e propriedades de compostos químicos incluindo métodos clássicos de purificação (recristalização, destilação e cromatografia preparativa) e de técnicas instrumentais modernas (espectroscopia de RMN e IV, espectrometria de massas, microscopia, etc...).

<u>Cimento</u>: projeto de três semanas envolvendo a preparação do comento a partir de matérias primas, envolvendo etapas de formulação (diferentes aditivos) e calcinação. Caracterização de corpo de prova por ensaios mecânicos, planejamento fatorial, fluorescência de raios-x, TGA, microscopia eletrônica, etc..

<u>Creme de uso pessoal</u>: Projeto de três semanas envolvendo etapas de formulação do creme e incorporação de uma flagrância extraída por um processo tipo soxhlet, composição da fragrância por CG-EM. Estudo sobre a estabilidade do sistema coloidal, determinação do tamanho de partículas e do potencial zeta.

Preparação de carvão ativo: Projeto de três semanas envolvendo a preparação e ativação de carvão ativo para finalidade de purificação de água. Caracterizações através de isotermas de adsorção, BET, avaliação de desempenho em termos de adsorção de efluentes modelos. Nanocompositos.

Preparação, caracterização e uso de catalisador heterogêneo: preparação de paládio adsorvido em carvão, caracterização e dosagem do teor de paládio adsorvido, utilização em reação de hidrogenação catalítica. Técnicas a serem utilizadas: microscopia eletrônica, área superficial, absorção atômica, CG-EM.

Síntese, formulação e caracterização de um fármaco: preparação, caracterização e formulação do paracetamol. Emprego de técnicas de RMN, IV, EM, NIR.

Aproveitamento de matéria-prima de fonte renovável: produção de biodiesel e de solvente verde. Reação de transesterificação de óleos vegetais com metanol, caracterização físicoquímica do biodiesel e do solvente industrial obtido a partir do glicerol e acetona. Técnicas empregadas: CG-EM, RMN, NIR.

Aproveitamento de matéria-prima de fonte renovável: produção de hidroximetilfurfural a partir de frutose. Reação de desidratação da frutose utilizando processos em batelada e fluxo para produzir hidroximetilfurfural. Emprego de métodos de separação (CG-EM, HPLC) e de identificação (EM, RMN, IV).

<u>Síntese de Produto Natural</u>, Neste experimento propõe-se a síntese do produto natural goniotalamina, isolado de diversas espécies vegetais inclusive da biodiversidade brasileira, a discussão dos princípios da química de organometálicos (reação de Grignard), da catalise homogênea (reação de metátese para fechamento de anel), da biossíntese dessa família de metabólitos secundários e a ação biológica desse composto no que se refere à apoptose celular e neoplasias.

Bibliografia

- J. Chem. Educ. 2014, 91, 1966.
- J. Chem. Educ. 2011, 89, 280.
- J. Chem. Educ. 2013, 90, 1373).
- J. Chem. Educ. 2015, 92, 179.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I — Normas Gerais, Capítulo V — Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação. Frequência: 75 % (* O abono de faltas será considerado dentro do previsto no capítulo VI, seção X, artigo 72 do Regimento Geral de Graduação)