

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

1º Semestre 2023

Disciplina		
Código	Nome	
QG104 B	Química	

Turmas	Horário	Local
55	Terças-Feiras - 21h-23h	IQ02
55	Quintas-Feiras - 19h-21h	IQ02

Docentes

Luiz Carlos Dias - <u>Idias@unicamp.br</u> Bloco D, 2º. Andar, Sala D-366

Disciplinas Teóricas – Plano de Ação IQ 1S/2023

Descrição: As disciplinas teóricas do 1S/2023 serão ministradas de forma presencial, incluindo os processos avaliativos, mas caso a situação epidemiológica de pandemia de COVID-19 não permita aulas presenciais em virtude da necessidade de manutenção de distanciamento social, as aulas serão conduzidas de forma remota e mediada por tecnologia, incluindo os processos avaliativos. Qualquer alteração na forma de condução da disciplina será informada com a devida antecedência. Eventualmente, algumas aulas poderão ser ministradas de forma remota.

Forma de Atendimento às Dúvidas das Aulas

Descrição: O atendimento extraclasse será realizado de acordo com a agenda do docente e do horário disponível dos alunos, em horários a serem combinados. O docente poderá também, retirar dúvidas antes e após as aulas.

Forma de Condução das Avaliações e Prazos de Entrega

Descrição: As avaliações do semestre terão duas provas (P1 e P2) e serão presenciais, caso a situação de pandemia permita. Caso não seja possível realizar as provas presenciais, as avaliações serão realizadas por dois trabalhos (P1 e P2) que terão 5 dias para serem entregues a partir do dia que forem disponibilizados no Google Classroom. O exame, para aqueles que precisarem (cf. critérios detalhados abaixo) será na forma de uma prova presencial (P3) se a situação de pandemia permitir, ou através de um trabalho P3 com o prazo também de 5 dias para entrega

Critérios de Avaliação e Aprovação

As provas ou trabalhos P1 e P2 comporão uma média parcial (MP) a ser calculada pela seguinte fórmula: MP = (P1 + P2)/2. Se MP \geq 5.0, então MP se torna igual à média final (MF) e o(a) aluno(a) está aprovado(a) no curso. Se MP < 5.0, o(a) aluno(a) terá o direito de realizar um exame (E) e a média final será calculada por MF = (MP + E)/2. Se MF \geq 5.0, o(a) aluno(a) está aprovado(a). Se MF < 5.0, o(a) aluno(a) está reprovado(a).

Calendário – Disciplinas Teóricas		
Data	Atividade	

02/03 | Início das aulas do 1º período letivo de 2023

06 a 08/04 | Feriado/Expediente Suspenso - Não haverá atividades

21 a 22/04 | Feriado/Expediente Suspenso - Não haverá atividades

01/05 | Feriado/Expediente Suspenso - Não haverá atividades

02/05 | Prova 01 - QG104 B

24/05 | Avaliação e discussão de cursos - Não haverá aula

08 a 10/06 | Feriado/Expediente Suspenso - Não haverá atividades

29/06 | Prova 02 - QG104 B

29/06 | Último dia de aula de QG104

01/07 | Último dia para o cumprimento da carga horária e programas das disciplinas.

03 a 08/07 | Semana de Estudos

08/07 | Término das aulas do 1º período letivo de 2023.

13/07 | Exame Final do 1º período letivo de 2023 - QG104 B

Tópicos a serem discutidos em sala de aula – Sujeito a ligeiras modificações em função da dinâmica da turma

Tópicos/Atividades

Apresentação do Curso/Fundamentos/Química como Ciência

Estrutura Atômica/Átomo/Partículas Atômicas

Teorias Atômicas/Modelo Atômico

Espectro Atômico e o Átomo de Bohr

Radiação Eletromagnética

Líquidos e Sólidos/Substâncias Puras/Misturas

Interações Intermoleculares

Orbitais Atômicos

Hibridização

A Tabela Periódica

Propriedades Periódicas

Mol e massa molar

Estrutura Eletrônica e Ligações Químicas

Ligações Químicas/Estrutura Atômica

Ligações iônicas e covalentes

Geometria molecular e polaridade das moléculas

A ligação metálica - Metais e semicondutores

Óxidos/Reações de Oxirredução

Átomos multieletrônicos

A ligação química em silicatos

Termodinâmica

Equilíbrio Químico

Concentração de soluções

Equilíbrios homogêneos e heterogêneos

Cinética química

Cinética química - Meia-vida de reação

Reações Químicas

Acidez e Basicidade

O pH e a dissociação de ácidos fracos

Equilíbrios de dissolução do CO2 na água

O CO2 atmosférico

Introdução à Química do Carbono

Polímeros

Química Nuclear

Outras informações relevantes

Livros texto adotados:

1- Principles of General Chemistry - Bruce A. Averill e Patricia Eldredge

O livro completo é disponibilizado pelo site da *Creative Commons*, uma organização sem fins lucrativos que possibilita o compartilhamento da criatividade e do conhecimento em bases legais.

Link para o livro *Principles of General Chemistry*:

http://2012books.lardbucket.org/books/principles-of-general-chemistry-

v1.0/index.html

Neste link você pode consultar os capítulos individuais online ou baixar os arquivos pdf dos capítulos ou do livro completo.

2- Chemical Fundamentals of Geology

Robin Gill - Wiley Blackwell, 3rd Ed. 2015

- 3- Materiais de apoio
- Livro de apoio em português: Princípios de Química

Peter Atkins e Loreta Jones, Bookman, São Paulo, SP

3a Ed. 2006 (ou outras edições)

Disponível na biblioteca do IQ e em outras bibliotecas da UNICAMP.

-Textos complementares de apoio à disciplina serão disponibilizados na área do Google Classroom pelo professor.

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMAS E BIBLIOGRAFIAS

Disciplina		
Código	Nome	
QG104	Química	

Vetor

OF:S-1 T:004 P:000 L:000 O:000 D:000 HS:004 SL:004 C:004 AV:N EX:S FM:75%

Pré-Req	Não	há
---------	-----	----

Ementa

O átomo: forma e energia de orbitais e distribuição dos elétrons. A tabela periódica e propriedades associadas. Ligação química, propriedades associadas, propriedades de mineirais simples. Soluções aquosas: formas de expressar a concentração, pH, constante de equilíbrio. Noções de físico-química: energia, equilíbrio e cinética de processos geológicos. Funções de química orgânica e exemplos relevantes no Sistema Terra.

Programa

- 01. Apresentação dos objetivos da disciplina -Química e as Revoluções na Sociedade
- 02. Desenvolvimento do modelo atômico -Breve histórico sobre a origem dos modelos atômicos -O que é um elemento química? -Isótopos, isótonos e isóbaros -Massas atômicas médias com base na abundância natural dos isótopos -O Conceito de mol, comparação desta grandeza com o mundo macroscópico
- 03. a) Isótopos: datação geológica (Isótopos de C-14 e O-18 em geologia) b) Reações nucleares e a origem dos elementos químicos
- 04. A estrutura eletrônica do átomo
- 05. Distribuição dos elétrons em átomos multieletrônicos e a origem da tabela periódica
- 06. Periodicidade: energia de ionização e raio atômico
- 07. Ligação Química
- 08. a)Razão dos raios iônicos e sua importância em mineralogia e geoquímica b)Distribuição dos elementos químicos na biosfera, presença dos elementos nas estruturas de minerais e minérios brasileiros.
- 09. Cristais com sais com oxiânios, zeólitas e outros sillicatos
- 10. Ligação Química II
- 11. Ligação Química III
- 12. Comparação das propriedades das substâncias iônicas, moleculares e metais
- 13. a)Concentração % em massa, ppm, ppb, ppt e mol/L b)Transformação da matéria: reações químicas c)Introdução do conceito de ácido e base (Broensted e Lewis)
- 14. Reações de neutralização
- 15. Solubilidade de compostos iônicos e reações de precipitação. Conceito de saturação e produto de solubilidade.
- 16. Obtenção de metais e reações de oxirredução
- 17. Química do Grupo I, II e III
- 18. Química do Grupo V, VI e VII
- 19. Termodinâmica
- 20. Noções de equilíbrio químico. Princípio de Lê Chatelier
- 21. Equilíbrio sólido-líquido. Diagrama de fases e regra de fases aplicada a sistemas sólido-líquido.
- 22. Química do carbono
- 23. Noções de química do petróleo
- 24. Fontes de energia e transformação de energia. Queima de combustíveis fósseis e fontes alternativas de energia

- 25. A Indústria química brasileira em números
- 26. Perspectivas da indústria química mundial. Pressão ambientalista. Globalização da produção de insumos químicos.

Bibliografia

- 1.Atkins, P.; Jones, L.; "Princípios de Química Questionando a Vida Moderna e o Meio Ambiente", Bookman, Porto Alegre, 2001.
- 2.Gillespie, R. J.; Eaton, D. R.; Humphreys, D. A.; Robinson, E. A., "Atoms, Molecules and Reactions An Introduction to Chemistry", Prentice Hall, New Jersey, 1994. 3.Chang, R., "Chemistry", McGraw-Hill, London, 1994.
- 4.Manahan, S. E., "Fundamentals of Environmental Chemistry", Lewis Publishers, London, 1993.
- 5. Brownlow, A. H., "Geochemistry", Prentice Hall, New Jersey, 1996.
- 6.Teixeira, W.; Toledo, M. C. M.; Fairchild, T. R.; Taioli, F., "Decifrando a Terra", Oficina de Textos, São Paulo, 2000.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação. Frequência: 75 % (* O abono de faltas será considerado dentro do previsto no capítulo VI, seção X, artigo 72 do Regimento Geral de Graduação)

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

1º Semestre 2023

Disciplina		
Código	Nome	
QG104 A	Química	

Turmas	Horário	Local
53/54	Quarta-Feira – 14h-16h	IQ04
53/54	Sexta-Feira – 10h-12h	IQ04

Docentes

Nelson Henrique Morgon – nhmorgon@unicamp.br Bloco H, 3º. piso, Sala H-315

Disciplinas Teóricas – Plano de Ação IQ 1S/2023

Descrição: As disciplinas teóricas do 1S/2023 serão ministradas de forma presencial, incluindo os processos avaliativos, mas caso a situação epidemiológica de pandemia de COVID-19 não permita aulas presenciais em virtude da necessidade de manutenção de distanciamento social, as aulas serão conduzidas de forma remota e mediada por tecnologia, incluindo os processos avaliativos. Qualquer alteração na forma de condução da disciplina será informada com a devida antecedência. Eventualmente, algumas aulas poderão ser ministradas de forma remota.

Forma de Atendimento às Dúvidas das Aulas

Descrição: O atendimento extraclasse será realizado de acordo com a agenda do docente e do horário disponível dos alunos, em horários a serem combinados. O docente poderá também, retirar dúvidas antes e após as aulas.

Forma de Condução das Avaliações e Prazos de Entrega

Descrição: As avaliações do semestre terão duas provas (P1 e P2) e serão presenciais, caso a situação de pandemia permita. Caso não seja possível realizar as provas presenciais, as avaliações serão realizadas por dois trabalhos (P1 e P2) que terão 5 dias para serem entregues a partir do dia que forem disponibilizados no Google Classroom. O exame, para aqueles que precisarem (cf. critérios detalhados abaixo) será na forma de uma prova presencial (P3) se a situação de pandemia permitir, ou através de um trabalho P3 com o prazo também de 5 dias para entrega

Critérios de Avaliação e Aprovação

As provas ou trabalhos P1 e P2 comporão uma média parcial (MP) a ser calculada pela seguinte fórmula: MP = (P1 + P2)/2. Se MP \geq 5.0, então MP se torna igual à média final (MF) e o(a) aluno(a) está aprovado(a) no curso. Se MP < 5.0, o(a) aluno(a) terá o direito de realizar um exame (E) e a média final será calculada por MF = (MP + E)/2. Se MF \geq 5.0, o(a) aluno(a) está aprovado(a). Se MF < 5.0, o(a) aluno(a) está reprovado(a).

Calendário – Disciplinas Teóricas	
Data	Atividade

03/03 | Início das aulas do 1º período letivo de 2023

06 a 08/04 | Feriado/Expediente Suspenso - Não haverá atividades

21 a 22/04 | Feriado/Expediente Suspenso - Não haverá atividades

01/05 | Feriado/Expediente Suspenso - Não haverá atividades

03/05 | Prova 01 - QG104 A

24/05 | Avaliação e discussão de cursos - Não haverá aula

08 a 10/06 | Feriado/Expediente Suspenso - Não haverá atividades

28/06 | Prova 02 - QG104 A

29/06 | Último dia de aula de QG104 A

01/07 | Último dia para o cumprimento da carga horária e programas das disciplinas.

03 a 08/07 | Semana de Estudos

08/07 | Término das aulas do 1º período letivo de 2023.

12/07 | Exame Final do 1º período letivo de 2023 - QG104 A

Tópicos a serem discutidos em sala de aula – Sujeito a ligeiras modificações em função da dinâmica da turma

Tópicos/Atividades

Apresentação do Curso/Fundamentos/Química como Ciência

Estrutura Atômica/Átomo/Partículas Atômicas

Teorias Atômicas/Modelo Atômico

Espectro Atômico e o Átomo de Bohr

Radiação Eletromagnética

Líquidos e Sólidos/Substâncias Puras/Misturas

Interações Intermoleculares

Orbitais Atômicos

Hibridização

A Tabela Periódica

Propriedades Periódicas

Mol e massa molar

Estrutura Eletrônica e Ligações Químicas

Ligações Químicas/Estrutura Atômica

Ligações iônicas e covalentes

Geometria molecular e polaridade das moléculas

A ligação metálica - Metais e semicondutores

Óxidos/Reações de Oxirredução

Átomos multieletrônicos

A ligação química em silicatos

Termodinâmica

Equilíbrio Químico

Concentração de soluções

Equilíbrios homogêneos e heterogêneos

Cinética química

Cinética química - Meia-vida de reação

Reações Químicas

Acidez e Basicidade

O pH e a dissociação de ácidos fracos

Equilíbrios de dissolução do CO2 na água

O CO2 atmosférico

Introdução à Química do Carbono

Polímeros

Química Nuclear

Outras informações relevantes

Livros texto adotados:

1- Principles of General Chemistry - Bruce A. Averill e Patricia Eldredge

O livro completo é disponibilizado pelo site da *Creative Commons*, uma organização sem fins lucrativos que possibilita o compartilhamento da criatividade e do conhecimento em bases legais.

Link para o livro *Principles of General Chemistry*:

http://2012books.lardbucket.org/books/principles-of-general-chemistry-

v1.0/index.html

Neste link você pode consultar os capítulos individuais online ou baixar os arquivos pdf dos capítulos ou do livro completo.

2- Chemical Fundamentals of Geology

Robin Gill - Wiley Blackwell, 3rd Ed. 2015

- 3- Materiais de apoio
- Livro de apoio em português: Princípios de Química

Peter Atkins e Loreta Jones, Bookman, São Paulo, SP

3a Ed. 2006 (ou outras edições)

Disponível na biblioteca do IQ e em outras bibliotecas da UNICAMP.

-Textos complementares de apoio à disciplina serão disponibilizados na área do Google Classroom pelo professor.

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMAS E BIBLIOGRAFIAS

Disciplina		
Código	Nome	
QG104	Química	

Vetor

OF:S-1 T:004 P:000 L:000 O:000 D:000 HS:004 SL:004 C:004 AV:N EX:S FM:75%

Pré-Req	Não	há
---------	-----	----

Ementa

O átomo: forma e energia de orbitais e distribuição dos elétrons. A tabela periódica e propriedades associadas. Ligação química, propriedades associadas, propriedades de mineirais simples. Soluções aquosas: formas de expressar a concentração, pH, constante de equilíbrio. Noções de físico-química: energia, equilíbrio e cinética de processos geológicos. Funções de química orgânica e exemplos relevantes no Sistema Terra.

Programa

- 01. Apresentação dos objetivos da disciplina -Química e as Revoluções na Sociedade
- 02. Desenvolvimento do modelo atômico -Breve histórico sobre a origem dos modelos atômicos -O que é um elemento química? -Isótopos, isótonos e isóbaros -Massas atômicas médias com base na abundância natural dos isótopos -O Conceito de mol, comparação desta grandeza com o mundo macroscópico
- 03. a) Isótopos: datação geológica (Isótopos de C-14 e O-18 em geologia) b) Reações nucleares e a origem dos elementos químicos
- 04. A estrutura eletrônica do átomo
- 05. Distribuição dos elétrons em átomos multieletrônicos e a origem da tabela periódica
- 06. Periodicidade: energia de ionização e raio atômico
- 07. Ligação Química
- 08. a)Razão dos raios iônicos e sua importância em mineralogia e geoquímica b)Distribuição dos elementos químicos na biosfera, presença dos elementos nas estruturas de minerais e minérios brasileiros.
- 09. Cristais com sais com oxiânios, zeólitas e outros sillicatos
- 10. Ligação Química II
- 11. Ligação Química III
- 12. Comparação das propriedades das substâncias iônicas, moleculares e metais
- 13. a)Concentração % em massa, ppm, ppb, ppt e mol/L b)Transformação da matéria: reações químicas c)Introdução do conceito de ácido e base (Broensted e Lewis)
- 14. Reações de neutralização
- 15. Solubilidade de compostos iônicos e reações de precipitação. Conceito de saturação e produto de solubilidade.
- 16. Obtenção de metais e reações de oxirredução
- 17. Química do Grupo I, II e III
- 18. Química do Grupo V, VI e VII
- 19. Termodinâmica
- 20. Noções de equilíbrio químico. Princípio de Lê Chatelier
- 21. Equilíbrio sólido-líquido. Diagrama de fases e regra de fases aplicada a sistemas sólido-líquido.
- 22. Química do carbono
- 23. Noções de química do petróleo
- 24. Fontes de energia e transformação de energia. Queima de combustíveis fósseis e fontes alternativas de energia

- 25. A Indústria química brasileira em números
- 26. Perspectivas da indústria química mundial. Pressão ambientalista. Globalização da produção de insumos químicos.

Bibliografia

- 1.Atkins, P.; Jones, L.; "Princípios de Química Questionando a Vida Moderna e o Meio Ambiente", Bookman, Porto Alegre, 2001.
- 2.Gillespie, R. J.; Eaton, D. R.; Humphreys, D. A.; Robinson, E. A., "Atoms, Molecules and Reactions An Introduction to Chemistry", Prentice Hall, New Jersey, 1994. 3.Chang, R., "Chemistry", McGraw-Hill, London, 1994.
- 4.Manahan, S. E., "Fundamentals of Environmental Chemistry", Lewis Publishers, London, 1993.
- 5. Brownlow, A. H., "Geochemistry", Prentice Hall, New Jersey, 1996.
- 6.Teixeira, W.; Toledo, M. C. M.; Fairchild, T. R.; Taioli, F., "Decifrando a Terra", Oficina de Textos, São Paulo, 2000.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação. Frequência: 75 % (* O abono de faltas será considerado dentro do previsto no capítulo VI, seção X, artigo 72 do Regimento Geral de Graduação)