

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

1º Semestre 2024

Disciplina				
Código	Nome			
QI852	Química dos Elementos			

Turmas	Horário	Local		
Α	Quinta-feira, 19h00-21h00	IQ03		

Docentes

Paulo Cesar de Sousa Filho

Lab. I211, Sala I209, Ramal 13053

pcsfilho@unicamp.br

Forma de Condução/Organização da Disciplina e das Avaliações

A cada semana em que a disciplina abordar novos conteúdos, são disponibilizados textos complementares (livros, artigos) por via eletrônica (Moodle) para estudo prévio pelos estudantes. A cada aula, será realizado um teste (10-15 min) antes do início das atividades; a entrega destes testes é opcional. A critério do estudante ou caso haja necessidade, a média dos testes entregues poderá substituir a nota de uma das provas. A avaliação consistirá em duas provas sobre os temas abordados ao longo do curso. As aulas serão conduzidas na forma expositiva-dialogada com conteúdo audiovisual, eventualmente utilizando outros recursos eletrônicos.

Prazos de Entrega das Atividades e dos Resultados das Avaliações

Os testes, quando aplicados, serão resolvidos em sala previamente ao início da aula. As notas dos testes serão disponibilizadas em até duas semanas seguintes à data de sua entrega. As provas 1 e 2 e o exame serão realizados em sala de aula, no horário das 19h00 às 21h00. As notas das provas serão disponibilizadas até a aula seguinte à sua realização. As notas do exame serão disponibilizadas entre os dias 11 e 12/07.

Critérios de Avaliação e Aprovação

A média (**M**) será dada por $M = \frac{P_1 + P_2}{2}$,

em que P_1 e P_2 são as notas das provas. Caso seja a opção do estudante ou caso haja necessidade, a nota de uma das provas poderá ser substituída pela média aritmética das notas dos testes disponibilizados semanalmente (T). As provas 1 e 2 consistirão em questões dissertativas ou associativas sobre os temas desenvolvidos ao longo da disciplina. O formato da prova 2 poderá ser alterado para outros tipos de avaliação (ex. apresentação de curta duração), desde que em comum acordo com a totalidade dos estudantes.

Serão considerados aprovados os alunos que obtiverem média maior ou igual a 5. Nesse caso, a nota final (N_f) será igual à média obtida $(N_f = M)$.

Se algum aluno obtiver M < 5, este realizará um exame (E), de modo que, nesse caso, $N_f = E$. Em casos estritamente especiais e justificados, a nota do exame poderá substituir as notas de P_1 ou P_2 , o que não se aplica nos casos em que o estudante optar por substituir uma das notas das provas pela média das notas das atividades.

Forma de Atendimento Extra-Classe

Haverá monitorias sob demanda com o docente e/ou os(as) PADs em horários a serem agendados ao início do semestre. Horários adicionais para a discussão de dúvidas com o docente também poderão ser agendados, caso necessário.

Calendário							
Data	Atividade	Tópicos gerais					
29/02	Aula 1	Introdução à disciplina					
07/03	Aula 2	Tabela periódica e estrutura eletrônica					
14/03	Aula 3	Tendências periódicas e ligações químicas					
21/03	Aula 4	Reações ácido-base					
28/03	Não haverá atividades (feriado)						
04/04	Aula 5	Oxidorredução					
11/04	Aula 6	Nucleossíntese, ocorrência e abundância dos elementos					
18/04	Aula 7	Hidrogênio e hidretos					
25/04	Prova 1						
02/05	Aula 8	Metais do bloco s					
09/05	Aula 9	Metais dos blocos d e f					
16/05	Aula 10	Metais dos blocos d e f					
23/05	Aula 11	Grupos 13 e 14					
30/05	Não haverá atividades (feriado)						
06/06	Aula 12	Grupos 15 e 16					
13/06	Aula 13	Grupos 17 e 18					
20/06	Prova 2						
27/06	Não haverá atividades (reserva p/ reposição)						
04/07	Semana de estudos						
11/07	Exame						

Outras informações relevantes

- (1) Art. 56 do Regimento Geral de Graduação: São condições para aprovação: II nas disciplinas em que nota e frequência são adotadas como forma de avaliação obter **nota final** igual ou superior a 5,0 (cinco vírgula zero) e a frequência mínima estabelecida para a disciplina no Catálogo dos Cursos de Graduação; a frequência mínima de 75%.
- (2) **Sobre o Abono de Faltas**: os critérios do Abono de Faltas são definidos pelo artigo 72, do Regimento Geral de Graduação.
- (3) De acordo com a **Deliberação CG 2022/01** sobre **PROVA SUBSTITUTIVA EM CASO DE FALTA JUSTIFICADA POR COVID-19**, a CG estabelece que o exame final poderá substituir a avaliação no dia de faltas abonadas pelo inciso V do artigo 72, exceto se o(a) estudante comprovar que a ausência foi motivada por suspeita ou contágio por COVID-19. Nessas situações suspeita ou contágio comprovado por COVID-19 o(a) estudante terá direito a reposição da atividade avaliativa, desde que componha sua média final, em data a ser combinada com o docente responsável, não podendo a prova de exame final ser utilizada para fins de substituição.
- (4) Quaisquer alterações no PDE, propostas pelo(a) Docente ou Discentes, no transcorrer do semestre, só poderão ser realizadas mediante a concordância do(a) Docente e Discentes, e autorização da Comissão de Graduação.

SEGUEM A EMENTA, PROGRAMA E BIBLIOGRAFIA

Código: Q1852

Nome: Química dos Elementos

Nome em Inglês: Chemistry of the Elements

Nome em Espanhol: Química de los Elementos

Tipo de Disciplina: Semanal

Tipo de Aprovação: Nota e Frequência

Característica: Regular Frequência: 75%

Tipo de Período / Período de Oferecimento: Semestral / Todos os períodos

Exige Exame: Sim

Vetores									
T	L	P	0	PE	OE	SL	SEMANAS	CRÉDITO	
2	-	-	-	-	-	2	15	2	

Ocorrência nos Currículos:

Pré-requisitos: QI145 ou QI146

Ementa: Estrutura e propriedades atômicas e suas relações com a química sistemática dos elementos. Processos químicos para a obtenção e aplicações dos elementos e seus compostos. Propriedades físicas e químicas dos compostos de interesse industrial.

Programa:

- Estrutura eletrônica de átomos polieletrônicos e classificação periódica.
- Metais e suas propriedades: alcalinos e alcalinos-terrosos; elementos de transição; lantanídeos e actinídeos. Ligas.
- Hidrogênio e seus compostos; hidretos dos elementos dos grupos 13 a 17.
- Boro e seus compostos; alotropia e clusters.
- Grupo do carbono; alotropia, carbetos, nanotubos, fulerenos e grafenos; silício e seus compostos; silicatos e aluminossilicatos.
- Grupos do nitrogênio e oxigênio; ativação de nitrogênio e oxigênio, haletos, óxidos e sulfetos. Fósforo, fosfatos e polifosfatos.
- Halogênios e gases nobres; pseudohalogênios e interhalogênios, compostos com oxigênio.
- Obtenção dos elementos e seus compostos mais relevantes para a indústria.
- Acidez e basicidade dos compostos. Oxiácidos.
- Química redox e diagramas de potenciais.

Bibliografia Básica

- 1) GREENWOOD, N. N.; EARNSHAW, A. Chemistry of the Elements. 2ª Ed. Oxford: Butterworth-Heinemann, 1997. 1341p. E-book.
- 2) WELLER, M.; OVERTON, T.; ROURKE, J.; ARMSTRONG, F. **Química Inorgânica**. 6ª Ed. Porto Alegre: Bookman, 2017. 866p. E-book.
- LEE, J. D. Química Inorgânica não tão concisa. Tradução da 5ª ed. Inglesa. São Paulo: Edgard Blücher, 1999. 527p.

Bibliografia Complementar

- 1) COTTON, F. A.; WILKINSON, G.; MURILO, C. A.; BOCHMANN, M. Advanced Inorganic Chemistry. 6ª Ed. New York: John Wiley & Sons, 1999. 1354p.
- 2) HOUSECROFT, C.; SHARPE, A. G. Inorganic Chemistry. 5ª Ed. Harlow: Pearson, 2018. 1251p.
- 3) SMITH, D. W. Inorganic Substances: A Prelude to the Study of the Descriptive Inorganic Chemistry. Cambridge: Cambridge University Press, 1990. 396p. E-book.
- TOMA, H. E. Elementos Químicos e seus Compostos. São Paulo: Edgard Blücher, 2013. 169p. (Coleção de Química Conceitual, vol. 3). E-book.
- 5) RAYNER-CANHAM, G.; OVERTON T. Descriptive Inorganic Chemistry. 6ª Ed. New York: Freeman, 2014. 691p.